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THE P-th ORDER OPTIMALITY CONDITIONS FOR DEGENERATE
INEQUALITY CONSTRAINED OPTIMIZATION PROBLEMS

OLGA BREZHNEVA 1, ALEXEY A. TRET’YAKOV 2

Abstract. In this paper, we present necessary and sufficient optimality conditions for opti-
mization problems with inequality constraints in the finite dimensional spaces. We focus on the
degenerate (nonregular) case when the linear independence constraint qualification (LICQ) and
Mangasarian-Fromovitz constraint qualification (MFCQ) are not satisfied at the solution of the
optimization problem. For the problems satisfying the p-regularity constraint qualification or
p-regularity conditions, we present necessary and sufficient conditions that resemble the struc-
ture of the classical conditions and give new and nontrivial conditions for degenerate inequality
constrained problems. We also present second-order necessary conditions and corresponding
sufficient conditions. The optimality conditions can be applied to discretizations of calculus of
variations and optimal control problems. In addition, we prove that the 2-regularity condition
is weaker than the MFCQ.
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1. Introduction

We consider the nonlinear optimization problem with inequality constraints

minimize
x∈Rn

f(x) subject to g1(x) ≥ 0, . . . , gm(x) ≥ 0, (1)

where the functions f and gi, i = 1, . . . , m, are sufficiently smooth, real–valued functions on Rn.
Most optimality conditions obtained for problem (1) cover the case when a solution x∗ is

regular. The most common regularity conditions (or constraint qualifications) are the linear
independence constraint qualification (LICQ) and Mangasarian-Fromovitz constraint qualifica-
tion (MFCQ). The LICQ holds at a feasible point x∗ if the active constraint gradients (g′i(x

∗))T ,
i ∈ I(x∗) = {i = 1, . . . ,m | gi(x∗) = 0}, are linearly independent. The MFCQ holds at a feasible
point x∗ if there exists a vector ν such that g′i(x

∗)ν > 0 for all i ∈ I(x∗). The MFCQ is a weaker
condition than the LICQ in the sense that satisfaction of the LICQ implies the MFCQ, but not
the reverse.

The classical optimality conditions are stated in terms of the Lagrange function defined by

L(x, λ) = f(x)−
m∑

i=1

λigi(x). (2)

Namely, the Karush-Kuhn-Tucker conditions state that if x∗ is a local minimum of problem
(1), and the LICQ or MFCQ holds at x∗, then there exists a Lagrange multiplier vector λ∗ =
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(λ∗1, . . . , λ
∗
m) such that

∂L

∂x
(x∗, λ∗) = f ′(x∗)−

m∑

i=1

λig
′
i(x

∗) = 0,

λ∗i ≥ 0, λ∗i gi(x∗) = 0, i = 1, . . . ,m.

The vector λ∗ is unique if the LICQ holds.
The primary goal of this paper is to present necessary and sufficient optimality conditions

for problem (1) without assuming LICQ or MFCQ. If the LICQ or MFCQ does not hold at
the solution, we say that problem (1) is degenerate (nonregular, abnormal). For example, in a
slightly modified version of the problem posted in [10],

minimize
x∈R2

f(x)

subject to −x4
1 + x2 ≥ 0,

3x4
1 − x2 ≥ 0,

both the LICQ and MFCQ do not hold at the point x∗ = 0. We give optimality conditions for
this example in Section 6.

There are several methods to overcome the difficulty of degeneracy, for instance, those in
[1, 11, 12, 16, 18, 19, 21]. Here we pursue an approach based on the construction of p-regularity
introduced earlier in [22, 23, 24, 25]. The main idea of the p-regularity approach is in using
higher order derivatives of the constraints gi(x) to replace the gradients of the active constraints
which are linearly dependent. To compare our approach with others, we would like to note that
Ledzewicz and Schättler in [18] introduced a concept of the p-regular mapping, but in a different
sense. A mapping is called p–regular at a point x∗ with respect to an element h1 in our sense
if it is p–regular in the direction of the sequence Hp−1 = (h1, 0, . . . , 0) in the sense of Ledzewicz
and Schättler [18]. However, both our definition and the definition from [18] reduce to the same
definition of 2–regularity for p=2. Ledzewicz and Schättler [18] also analyze p–regular problems,
but they require the functions to be (2p− 1)-times continuously differentiable while we assume
that the functions are (p + 1)-times continuously differentiable. Other results of this type are
obtained in the work of Izmailov [14, 15] and of Izmailov and Solodov [16]. We compare our
results with ones obtained in [14, 15, 16] and other relevant work in Section 7.

This paper continues the series of publications devoted to optimality conditions for degenerate
optimization problems. In [3], we considered problems with equality constraints given in the
operator form as F (x) = 0. The focus of the paper was on the case when the constraints are
not regular at the solution x∗ in the sense that the operator F ′(x∗) is not surjective. In [3],
we derived new sufficient conditions for p-regular problems and necessary optimality conditions
for problems satisfying the generalized condition of p–regularity. In [5] and [6], we turned
our attention to problems with inequality constraints in the finite dimensional spaces in the
completely degenerate case (19) when the LICQ and MFCQ do not hold. In [5], we introduced a
new constraint qualification, the p-regularity constraint qualification (PRCQ), and derived new
necessary optimality conditions for problems satisfying the PRCQ. One of the assumptions in
[5] is existence of a nonzero element in the set Ĥp(x∗) defined by (21). In [6], we considered
the case when the set Ĥp(x∗) consists only of a zero vector and derived necessary conditions for
degenerate optimization problems in that case.

In this paper, we extend our consideration to the general case and propose necessary con-
ditions for degenerate problems that are not necessarily satisfy assumption (19), which is one
of the main assumptions in [5] and [6]. We also derive new second-order necessary conditions
and sufficient conditions for optimality for degenerate optimization problems. The presented
optimality conditions resemble the structure of the classical optimality conditions. Necessary
conditions given in this paper reduce to the KKT conditions in the regular case. The optimality



200 TWMS J. PURE APPL. MATH., V.1, N.2, 2010

conditions can be applied to discretizations of calculus of variations and optimal control prob-
lems. In the end, we show that our assumptions are weaker than the Mangasarian-Fromovitz
constraint qualification.

We give a special consideration to the case of p = 2 and propose new necessary and sufficient
conditions for this case. At the same time, there are some important applications that require
p > 2 in such areas as geometric programming, quantum physics, singular optimal controls and
others. Moreover, the examples given in the paper illustrate that there exist problems for which
the proposed p-regularity concept works. The consideration in the paper does not intend to cover
all degenerate (nonregular, abnormal) problems, but it covers some classes of the nonregular
problems and allows us to get some theoretical results that were not obtained earlier for these
classes of problems. The results presented in the paper can be viewed as continuation of the
work published by A. A. Tret’yakov and J. E. Marsden in [25].

The organization of the paper is as follows. Section 2 is devoted to an overview of the
main concepts of the p-regularity theory. Namely, in Section 2.1, we recall some definitions
of the p–regularity theory [25] for finite dimensional spaces. We also give one of the main
results, a generalization of the Lyusternik theorem, which we need for our consideration in the
paper. In Section 2.2, we recall the p–order conditions for equality constrained optimization
problems derived earlier in [3] and [17]. Then in Section 2.3, we give a modified version of the
necessary conditions proposed originally in [6]. Namely, we show that the Lagrange multiplier
is nonnegative (this proof was not given in [6]). In addition, the technique that is used to prove
that result is new and has a potential to be used to derive other results in optimality conditions.

We propose new results in Sections 3, 4, and 5. In Section 3.1, we continue considering
the completely degenerate case and present new first- and second-order necessary optimality
conditions for that case. The main difference between the results presented in Section 2.3 and
ones derived in Section 3.1 is in the approach that is used to obtain the new optimality conditions.
Namely, we do not use slack variables in Section 3.1. Note that in Theorem 3.4, in addition
to the first-order necessary conditions, we also derive the second-order necessary conditions. In
Section 3.2, we consider the case of general degeneration and derive new necessary conditions,
first, for the case of p = 2, and then for any p > 2. Section 4 presents new sufficient conditions
of optimality. In Section 5, we present a new result stating that the 2-regularity condition is
weaker than the MFCQ. In Section 6, we illustrate the obtained results by several examples,
including an example arising from a discretization of an isoperimetrical problem in calculus of
variations. Comparison with the other work in the area as well as some concluding remarks are
given in Section 7.

Notation. The active set I(x∗) at any feasible x∗ is the set of indices of the active constraints;
i.e., I(x∗) = {i = 1, . . . , m | gi(x∗) = 0}. We denote by gI(x) the vector of functions gi(x),
i ∈ I(x).

Let p be a natural number and let B : Rn × Rn × . . . × Rn (with p copies of Rn) → Rm

be a continuous symmetric p-multilinear mapping. The p-form associated to B is the map
B[·]p : Rn → Rm defined by B[x]p = B(x, x, . . . , x), for x ∈ Rn. If f : Rn → R is a differentiable
function, the vector of its first-order partial derivatives at a point x ∈ Rn will be denoted by
f ′(x) : Rn → Rn. If F : Rn → Rm is of class Cp, we let F (p)(x) be the pth derivative of
F at the point x (a symmetric multilinear map of p copies of Rn to Rm) and the associated
p-form (also called the p-order mapping) is F (p)(x)[h]p = F (p)(x)(h, h, . . . , h). Further, Ker Λ =
{x ∈ Rn | Λx = 0} denotes the null–space (kernel) of a given linear operator Λ : Rn → Rm,
and Im Λ = {y ∈ Rm | y = Λx for some x ∈ Rn} is its image space. Furthermore, we use the
following key notation: Ker pF (p)(x) = {h ∈ Rn |F (p)(x) [h]p = 0 } is the p-kernel (p–null-cone)
of the p-order mapping.
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2. Factor-analysis of nonlinear mappings: p–regularity theory

In this section, we give an overview of basic definitions of the p–regularity theory [25] for
finite dimensional spaces and recall optimality conditions for degenerate equality–constrained
optimization problems derived in our earlier work. We also give one of the main results, a
generalization of the Lyusternik theorem, which we need for our consideration in the paper.
Then in Section 2.3, we give a modified version of the necessary conditions (Theorem 2.12)
proposed originally in [6]. Namely, we show that the Lagrange multiplier is nonnegative (this
proof was not given in [6]). In addition, the technique that is used to prove that result is new and
has a potential to be used to derive other results in optimality conditions. Since the necessary
conditions presented in Theorem 2.12 are formulated in terms of the auxiliary functions F (x)
given by (22), we introduce Theorem 2.13, which is a new formulation of Theorem 2.12 in terms
of the original constraint function g(x).

2.1. Main definitions and some results of the p-regularity theory. Consider a sufficiently
smooth nonlinear mapping F : Rn → Rm, m ≤ n. The mapping F can be represented as the
m-vector of functions Fi(x) : Rn → R, i = 1, . . . , m; i.e., F (x) = (F1(x), . . . , Fm(x))T .

The mapping F is called regular at some point x∗ ∈ Rn if

Im F ′(x∗) = Rm, (3)

or, in other words,
rankF ′(x∗) = m.

The mapping F is called nonregular (irregular, degenerate) if the regularity condition (3) is not
satisfied.

Assume that we can decompose the space Rm into the direct sum

Rm = Y1 ⊕ . . .⊕ Yp, (4)

where Y1 = ImF ′(x∗), the image of the first derivative of F evaluated at x∗, and the remaining
spaces are defined as follows. Let Z2 be a complementary subspace to Y1, and let PZ2 : Rm → Z2

be the projection operator onto Z2 along Y1. Let Y2 be the linear span of the image of the
quadratic map PZ2F

′′(x∗)[·]2. More generally, define inductively,

Yi = span ImPZiF
(i)(x∗)[·]i ⊆ Zi, i = 2, . . . , p− 1, (5)

where Zi is a choice of complementary subspace for (Y1 ⊕ . . . ⊕ Yi−1) with respect to Rm,
i = 2, . . . , p, and PZi : Rm → Zi is the projection operator onto Zi along (Y1 ⊕ . . .⊕ Yi−1) with
respect to Rm, i = 2, . . . , p. Finally, let Yp = Zp. The order p is chosen as the minimum number
for which (4) holds.

Define the following mappings ([24])

fi(x) : Rn → Yi, fi(x) = PiF (x), i = 1, . . . , p, (6)

where Pi : Rm → Yi is the projection operator onto Yi along (Y1 ⊕ . . .⊕ Yi−1 ⊕ Yi+1 ⊕ . . .⊕ Yp)
with respect to Rm, i = 1, . . . , p.

A p-factor operator plays the central role in the p-regularity theory. We give the following
definition of the p-factor operator.

Definition 2.1. The linear operator Ψp(h) : Rn → Rm, defined by

Ψp(h) = f ′1(x
∗) + f ′′2 (x∗)h + f ′′′3 (x∗)[h]2 + . . . + f (p)

p (x∗)[h]p−1, h ∈ Rn, (7)

is called the p-factor operator.

Observe that in Definition 2.1, the p-factor operator depends on h, however, there is no
dependence of Yi defined by (5) on h.

Now we are ready to introduce another important definition of the p-regularity theory.
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Definition 2.2. The mapping F is called p-regular at x∗ with respect to an element h if

ImΨp(h) = Rm.

A set Hp(x∗) introduced below is the key one for many results obtained in the p-regularity
theory.

Hp(x∗) =
p⋂

i=1

Kerif
(i)
i (x∗) = {h ∈ Rn | f (i)

i (x∗) [h]i = 0, i = 1, . . . , p }. (8)

To obtain results, it is important to assume that F is p-regular at x∗ not only with respect
to some element h, but rather with respect to any vector h from the set Hp(x∗). Thus, the
following definition is a significant one.

Definition 2.3. The mapping F is called p-regular at x∗ if either Hp(x∗) = {0} or F is p-regular
with respect to any h ∈ Hp(x∗)\{0}.

For our consideration, we need the following result, which is a generalization of the classical
Lyusternik theorem for p-regular mappings. To state the theorem, we recall a definition of a
tangent vector and a tangent cone (see, for instance, Ioffe and Tihomirov [13]).

Definition 2.4. We call h a tangent vector to a set M ⊆ Rn at x∗ ∈ M if there exist ε > 0 and
a function r : [0, ε] → Rn with the property that for t ∈ [0, ε] we have x∗ + th + r(t) ∈ M and
‖r(t)‖ = o(t). The collection of all tangent vectors at x∗ is called the tangent cone to M at x∗
and it is denoted by T1M(x∗).

Theorem 2.5 (Generalized Lyusternik Theorem). Let U be a neighborhood of a point x∗ ∈ Rn.
Assume that F : Rn → Rm is a p–times continuously differentiable mapping in U and is p–regular
at x∗. Then the tangent cone to the set M(x∗) = {x ∈ U |F (x) = F (x∗)} is T1M(x∗) = Hp(x∗),
where Hp(x∗) is given by (8).

The proof of Theorem 2.5 is given in [22] for the completely degenerate case, in [9] for the
case of p = 2 and in [17] for the general case.

In the two following subsections, we give a specific form of the p-factor operator (7) and of
the set Hp(x∗) defined in (8) for the completely degenerate case and for the case of p = 2. We
need these specific forms for our consideration in the following sections of the paper.

2.1.1. Completely degenerate case. For some p ≥ 2 and some x∗, we say that we have the
completely degenerate case if

F (r)(x∗) = 0, r = 1, . . . , p− 1. (9)

In this case, Y1 = . . . = Yp−1 = 0, and the p-factor operator (7) could be defined as

Ψp(h) = F (p)(x∗)[h]p−1, h ∈ Rn, (10)

since f
(i)
i (x∗) = 0, i = 1, . . . , p − 1, and f

(p)
p (x∗) = F (p)(x∗). Moreover, the set Hp(x∗) defined

in (8) reduces to

Hp(x∗) = Ker pF (p)(x∗) = {h ∈ Rn |Fi
(p)(x∗) [h]p = 0, i = 1, . . . , m }. (11)

Furthermore, in the completely degenerate case (9), Definition 2.3 of p–regularity of F at x∗

is equivalent to the linear independence of the vectors F
(p)
i (x∗)[h]p−1, i = 1, . . . , m, for any h

from the set Hp(x∗) defined by (11).
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2.1.2. Case of p = 2. The following definition is a specific form of Definition 2.1 for the case of
p = 2.

Definition 2.6. A linear operator Ψ2(h) : Rn → Rm,

Ψ2(h) = F ′(x∗) + P⊥F ′′(x∗)h, h ∈ Rn, ‖h‖ = 1,

is said to be the 2–factor-operator, where P⊥ is a matrix of the orthoprojector onto (ImF ′(x∗))⊥,
which is an orthogonal complementary subspace to the image of the first derivative of F evaluated
at x∗.

The following definition is a specific case of Definition 2.2.

Definition 2.7. The mapping F is called 2-regular at x∗ with respect to an element h if

ImΨ2(h) = Rm.

In the case of p = 2, the set Hp(x∗) defined in (8) reduces to

H2(x∗) = {h ∈ Rn |F ′(x∗)h = 0, P⊥F ′′(x∗)[h]2 = 0}. (12)

2.2. The p-order optimality conditions for equality constrained optimization prob-
lems. In this section, we recall the pth order optimality conditions for the following equality
constrained problem

min
x∈Rn

f(x) subject to F (x) = (F1(x), . . . , Fm(x))T = 0, (13)

where f : Rn → R is a sufficiently smooth real valued function and F : Rn → Rm is a sufficiently
smooth mapping. We use x̄ to denote the solution to equality constrained optimization problem
(13), while we use x∗ to denote a solution to an inequality constrained optimization problem.

Consider some vector h ∈ Rn and define the p-factor-Lagrange function [3, 25] as

Lp(x, h, λ0(h), y(h)) = λ0(h)f(x)−
p∑

i=1

〈yi(h), f
(i−1)
i (x)[h]i−1〉, x ∈ Rn yi(h) ∈ Yi, (14)

where fi, i = 1, . . . , p, are defined in (6), Yi are defined in (5), and 〈·, ·〉 denotes the scalar (dot)
product of two vectors. Here, the function Lp plays the role of the Lagrange function, and λ0(h)
and yi(h) play the role of higher-order Lagrange multipliers.

Theorem 2.8 (Necessary and Sufficient Conditions for Optimality). Let U ⊂ Rn be a neighbor-
hood of the point x̄. Suppose that f ∈ C2(U,R) and that F ∈ Cp+1(U,Rm). Suppose also that
there exists h ∈ Hp(x̄)\{0}, where Hp(x̄) is defined by (8). Let Ψp(h) be defined by (7).

(1) If x̄ is a local solution to problem (13), then there exist λ0(h) ∈ R and multipliers
yi(h) ∈ Yi, i = 1, . . . , p, such that they do not all vanish , and

∂Lp

∂x
(x̄, h, λ0(h), y(h)) = λ0(h) f ′(x̄)−

p∑

i=1

(f (i)
i (x̄)[h]i−1)T yi(h) = 0.

If ImΨp(h) = Y1 ⊕ . . .⊕ Yp, then λ0(h) 6= 0, so

∂Lp

∂x
(x̄, h, 1, y(h)) = 0.

Moreover,
∂2Lp

∂x2
(x̄, h, 1, ỹ(h))[h]2 ≥ 0, (15)

where

ỹ(h) =
(

y1(h),
1
3
y2(h), . . . ,

2
i(i + 1)

yi(h), . . . ,
2

p(p + 1)
yp(h)

)
. (16)
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(2) Suppose that ImΨp(h) = Y1 ⊕ . . .⊕ Yp for any element h ∈ Hp(x̄).
If there exist α > 0 and multipliers yi(h) ∈ Yi, i = 1, . . . , p, such that

∂Lp

∂x
(x̄, h, 1, y(h)) = 0 (17)

and for all h ∈ Hp(x̄)

∂2Lp

∂x2
(x̄, h, 1, ỹ(h))[h]2 ≥ α‖h‖2, (18)

where ỹ(h) is defined by (16), then x̄ is an isolated solution to problem (13).

Remark 2.1. (1) The sufficient optimality conditions stated in part (2) complement the
second-order necessary conditions given in part (1). In both parts ỹ(h) is defined by
(16).

(2) The proof of statement (1) of Theorem 2.8 (the necessary conditions for optimality) is
given in [17], and the proof of part (2) is given in [3]. The statement (2) in [3] has a
error: the Lagrange multiplier ỹ(h) in the sufficiency part should be defined by (16). The
error was corrected in [4].

2.3. Necessary optimality conditions for inequality constrained problems in the com-
pletely degenerate case. In this section, we give a modified version of the necessary optimality
conditions for problem (1), which were presented in our paper [6]. We consider the following
completely degenerate case:

g
(r)
i (x∗) = 0, r = 1, . . . , p− 1, p ≥ 2, ∀i ∈ I(x∗), (19)

where x∗ is a solution to (1), and p denotes a number for which (19) holds.
The following constraint qualification was introduced in [5].

Definition 2.9 (p-regularity constraint qualification (PRCQ)). Given a point x∗ and the active
set I(x∗), we say that the p-regularity constraint qualification (PRCQ) holds at the feasible point
x∗ with respect to a vector h ∈ Rn if x∗ is strictly feasible or if (19) holds and the set of vectors
{g(p)

i (x∗)[h]p−1, i ∈ I(x∗)} is linearly independent.

Let the rows of matrix GI(h) be composed of the vectors g
(p)
i (x∗)[h]p−1, i ∈ I(x∗). If the

PRCQ holds at the point x∗ with respect to the vector h, then the matrix GI(h) has full rank.
In the regular case, the matrix GI(h) reduces to the Jacobian matrix of the active constraints.
Thus, the PRCQ is a generalization of the LICQ.

Consider some vector h ∈ Rn and define the p-factor–Lagrange function:

Lp(x, h, λ(h)) = f(x)−
m∑

i=1

λi(h)g(p−1)
i (x)[h]p−1, λ(h) = (λ1(h), . . . , λm(h))T . (20)

Similarly to the definition of the set Hp(x∗) given by (11), we introduce set Ĥp(x∗), which is
used in optimality conditions for problem (1),

Ĥp(x∗) = {h ∈ Rn | g(p)
i (x∗)[h]p = 0, i ∈ I(x∗)}. (21)

Consider the case when the set Ĥp(x∗) consists of the zero vector only and (19) holds with
an even p. In this case, we can convert problem (1) to a problem with equality constraints by
introducing slack variables si and replacing the inequalities gi(x) ≥ 0 with the equalities

Fi(x, s) = gi(x)− sp
i = 0, si ∈ R, i = 1, . . . ,m. (22)

The introduction of slack variables transforms problem (1) into the following one:

minimize
(x, s)

f(x) subject to Fi(x, s) = gi(x)− sp
i = 0, i = 1, . . . , m, (23)
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where Fi : Rn×m → R, i = 1, . . . ,m. This transformation of problem (1) into the equality con-
strained form (23) gives new possibilities for the analysis of problem (1). The slack variables are
also used in [7] to obtain new methods for solving degenerate inequality constrained optimization
problems. The following result stated in [6] is used in our consideration in the paper.

Lemma 2.10. Let x∗ be a feasible point for problem (1). Then x∗ is a local minimizer to (1) if
and only if (x∗, 0) is a local minimizer to the following problem

minimize
(x, s)

f(x) subject to Fi(x, s) = gi(x)− sp
i = 0, i ∈ I(x∗). (24)

Consider some element h = (hx, hs), where hx ∈ Rn and hs ∈ Rm, and define the set

H̃p(x∗, 0) = {h ∈ Rn×m |F (p)
i (x∗, 0)[(hx, hs)]p = 0, i ∈ I(x∗)}. (25)

This set H̃p(x∗, 0) replaces the set Ĥp(x∗) in this section.
We denote by F (x, s), the vector of functions Fi(x, s), i ∈ I(x∗). Recall that we consider the

case of Ĥp(x∗) = {0}, where Ĥp(x∗) is defined in (21), i.e., only h = 0 satisfies g
(p)
i (x∗)[h]p = 0

for all i ∈ I(x∗). We assume that H̃p(x∗, 0) 6= {0}; otherwise, in accordance with the following
lemma, x∗ is an isolated feasible point for problem (1), and solving problem (1) reduces to
solving the system of nonlinear inequalities which are constraints in (1).

Auxiliary properties of problem (1) derived in the following lemma were mentioned in [6]
but without a formal statement and a proof, so we provide them here for completeness of our
consideration.

Lemma 2.11. Let x∗ be a feasible point to (1). Let the set H̃p(x∗, 0) be defined by (25), and let
F (x, s) be the vector of functions Fi(x, s), i ∈ I(x∗), with Fi defined by (22).

1. If the set H̃p(x∗, 0) consists only of the zero vector, then x∗ is an isolated feasible point for
problem (1).

2. Assume that F (x, s) is p–regular at (x∗, 0) and x∗ is an isolated feasible point for problem
(1). Then H̃p(x∗, 0) = {0}.

Proof.
1. Since H̃p(x∗, 0) = {0}, then by Definition 2.3, the mapping F (x, s) is p–regular at (x∗, 0).

Thus, by Theorem 2.5, T1M(x∗, 0) = {0}, where T1M(x∗, 0) is the tangent cone to the set
M(x∗, 0) = {(x, s) ∈ Ū |F (x, s) = F (x∗, 0)}. This means that the point (x∗, 0) is an isolated
solution to the system F (x, s) = 0. Hence, by definition of F , x∗ is an isolated solution to
gi(x) = 0, i ∈ I(x∗). Together with the assumption that x∗ is a feasible point to (1), this implies
that x∗ is an isolated feasible point for problem (1).

2. If x∗ is an isolated feasible point for problem (1), then, the point (x∗, 0) is an isolated
solution to the system F (x, s) = 0. Hence, T1M(x∗, 0) = 0. Since F is p-regular at (x∗, 0), then
by Theorem 2.5, H̃p(x∗, 0) = {0}.

In this subsection, h = (hx, hs) denotes an element from the set H̃p(x∗, 0), and hsi denotes
the ith component of the vector hs.

A slight modification of the following theorem was derived in [6], namely, we did not state
the nonnegativity condition of the Lagrange multipliers.

We introduce a modification of the function Lp(x, h, λ(h)) given in (20) as follows:

L̄p(x, h, λ(h)) = f(x)−
∑

i∈I(x∗)

λi(h)g(p−1)
i (x)[h]p−1. (26)

Theorem 2.12 (The pth order necessary conditions for optimality in the case of an even p

and Ĥp(x∗) = {0}). Let x∗ be a local minimum of problem (1), let U ⊂ Rn be a neighborhood
of the point x∗, and let (19) hold with an even p. Let the set H̃p(x∗, 0) be defined by (25),
and let Fi(x, s), i = 1, . . . , m, be defined by (22). Suppose that f ∈ C2(U,R) and that g ∈
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Cp+1(U,Rm). Suppose also that there exists h = (hx, hs), ‖h‖ = 1, h ∈ H̃p(x∗, 0), such that the
vectors F

(p)
i (x∗, 0)[(hx, hs)]p−1, i ∈ I(x∗), are linearly independent. Then there exists a Lagrange

multiplier vector λ∗(h), with components λ∗i (h) ≥ 0, i ∈ I(x∗), such that

∂L̄p

∂x
(x∗, hx, λ∗(h)) = f ′(x∗)−

∑

i∈I(x∗)

λ∗i (h)g(p)
i (x∗)[hx](p−1) = 0, (27)

λ∗i (h)hsi = 0, i ∈ I(x∗). (28)

Proof. Eqs. (27) and (28) were derived in [6]. Now, we show that λ∗i (h) ≥ 0, i ∈ I(x∗), The
proof consists of several following parts. We consider the vector h = (hx, hs) ∈ H̃p(x∗, 0) , such
that the vectors F

(p)
i (x∗, 0)[hx, hs]p−1, i ∈ I(x∗), are linearly independent.

(1) Assume on the contrary that there exists j ∈ I(x∗) such that λ∗j (h) < 0. Since by the

assumption, vectors F
(p)
i (x∗, 0)[hx, hs]p−1, i ∈ I(x∗), are linearly independent, by the

Kronecker-Capelli theorem, the following system with some yj > 0 and yi = 0, i 6= j,
has a solution ξ̄ = (ξ̄x, ξ̄s) such that

(F (p)
j (x∗, 0)[hx, hs]p−1)ξ̄ = yj > 0,

(F (p)
i (x∗, 0)[hx, hs]p−1)ξ̄ = yi = 0, i 6= j, i ∈ I(x∗).

(29)

Since λ∗j < 0, we have hsj = 0 by (28). Then by the definition of F we obtain

Fj
(p)(x∗, 0)[hx, hs]p−1 = g

(p)
j (x∗)[hx]p−1, (30)

and by (29) and (30),

(F (p)
j (x∗, 0)[hx, hs]p−1)ξ̄ = g

(p)
j (x∗)[hx]p−1ξ̄x = yj > 0. (31)

Similarly, by (28), (29), and (30), for i 6= j, i ∈ I(x∗), we have either λ∗i = 0 and/or
hsi = 0 and

g
(p)
i (x∗)[hx]p−1ξ̄x = yi = 0. (32)

(2) We will show that the arc (αhx + α3/2ξ̄x + ω(α)), ‖ω(α)‖ = o(α3/2), is feasible at x∗ for
some sufficiently small α > 0, that is, for i = 1, . . . , m,

gi(x∗ + αhx + α3/2ξ̄x + ω(α)) ≥ 0. (33)

Since (19) holds, by Taylor expansion, we have for i ∈ I(x∗),

gi(x∗ + αhx + α3/2ξ̄x + ω(α)) = (34)

=
1
p!

αpg
(p)
i (x∗)[hx]p +

1
p!

αp+1/2g
(p)
i (x∗)[hp−1

x , ξ̄x] + ω̃(α)
,

where ‖ω̃(α)‖ = o(αp+1/2). Note that by the definition of F and (hx, hs) ∈ H̃p(x∗, 0),
we have that

0 = F
(p)
i (x∗, 0)[(hx, hs)]p = g

(p)
i (x∗)[hx]p − p!hp

si
, i ∈ I(x∗). (35)

Assume that α > 0 is sufficiently small and show that (33) holds for i = 1, . . . , m. If
i ∈ I(x∗) and hsi 6= 0, then since p is even, g

(p)
i (x∗)[hx]p > 0 by (35), and (34) yields (33).

If i = j (j is defined as the index for which λ∗ < 0), then hsj = 0 and (33) follows from

(31), (34), and (35). For i ∈ I(x∗) such that g
(p)
i (x∗)[hx]p = 0 and g

(p)
i (x∗)[hp−1

x , ξ̄x] = 0,
the generalized Lyusternik Theorem [17] yields

gi(x∗ + αhx + α3/2ξ̄x + ω(α)) = 0,

and, hence, (33) holds. For i /∈ I(x∗), since gi(x∗) > 0, we can choose α sufficiently small
so that (33) holds.
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(3) Eq. (27) yields

f ′(x∗)(αhx + α3/2ξ̄x + ω(α)) =
∑

i∈I(x∗)

λ∗i (h)g(p)
i (x∗)[hx](p−1)(αhx + α3/2ξ̄x + ω(α)).

As follows from consideration above, for i ∈ I(x∗), either λ∗i (h) = 0 or (31) and (32)
hold. Hence,

f ′(x∗)ξ̄x =
∑

i∈I(x∗)

λ∗i (h)g(p)
i (x∗)[hx](p−1)ξ̄x = λ∗j (h)g(p)

j (x∗)[hx](p−1)ξ̄x < 0.

Moreover, for every i ∈ I(x∗) either λ∗i (h) = 0 or g
(p)
i (x∗)[hx]p = 0. Then using Taylor

expansion of the function f gives

f(x∗ + αhx + α3/2ξ̄x + ω(α)) < f(x∗),

which contradicts the assumption that x∗ is a local minimizer.
Theorem 2.12 gives necessary conditions for problem (1), but its statement contains functions

Fi(x, s) introduced in (23) and the set H̃p(x∗, 0) defined in (25). In the following theorem, we
give a new reformulation of Theorem 2.12 in terms of the original constraint function g(x).
Recall that by definition of the functions Fi(x, s) in (22), the set H̃p(x∗, 0) given in (25) can be
defined as

H̄p(x∗) = {h ∈ Rn | g(p)
i (x∗)[h]p ≥ 0, i ∈ I(x∗)}. (36)

The next theorem is a reformulation of Theorem 2.12 in terms of the function Lp defined in (20)
and of the original constraint function g(x).

Theorem 2.13 (The pth order necessary conditions for optimality). Let x∗ be a local minimum
of problem (1), let U ⊂ Rn be a neighborhood of the point x∗, and let (19) hold with an even p. Let
the set H̄p(x∗) be defined by (36). Suppose that f ∈ C2(U,R) and that g ∈ Cp+1(U,Rm). Suppose
also that there exists h = (hx, hs), ‖h‖ = 1, h ∈ H̄p(x∗), such that the vectors g

(p)
i (x∗)[h]p−1,

i ∈ I(x∗), are linearly independent, that is the PRCQ holds at x∗ with respect to the vector h.
Then there exists a Lagrange multiplier vector λ∗(h), with components λ∗i (h) ≥ 0, i ∈ I(x∗),
such that

∂Lp

∂x
(x∗, h, λ∗(h)) = f ′(x∗)−

m∑

i=1

λ∗i (h)g(p)
i (x∗)[h]p−1 = 0, (37)

λ∗i (h)g(p)
i (x∗)[h]p = 0, i = 1, . . . , m, (38)

λ∗i (h) ≥ 0, λ∗i (h)gi(x∗) = 0, i = 1, . . . ,m. (39)

3. New necessary optimality conditions for degenerate optimization problems

The theorems derived in this section can be viewed as extension of our results presented in
Section 2.3 for inequality constrained optimization problems for the case of Ĥp(x∗) = {0} and
an arbitrary p. In Section 3.1, we continue considering the completely degenerate case when
condition (19) holds. The main difference between the results presented in Section 2.3 and ones
derived in Section 3.1 is in the approach that is used to obtain the new optimality conditions.
Namely, we do not use slack variables in Section 3.1. Note that in Theorem 3.4, in addition to
the first-order necessary conditions, we also derive the second-order necessary conditions. Then
in Section 3.2 we obtain new necessary optimality conditions for the case when a solution x∗ is
degenerate, but (19) does not hold for any p. Note that some results presented in the previous
section hold for even or odd values of p only. We do not make additional requirements on p in
this section, so the new necessary conditions hold for any p.
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3.1. New necessary optimality conditions in the completely degenerate case for any
p ≥ 2. We consider the case when Ĥp(x∗) = {0} and (19) holds. Introduce the following notation

Af (x∗) = {h ∈ Rn | 〈f ′(x∗), h〉 ≥ 0},
Ag(x∗) = {h ∈ Rn | g(p)

i (x∗)[h]p ≥ 0, i ∈ I(x∗)}
I0(h) = {i ∈ I(x∗) | g(p)

i (x∗)[h]p = 0, h ∈ Ag(x∗)},
K(x∗) = Ag(x∗)

⋂
Kerf ′(x∗).

Definition 3.1. The mapping g(x) is called p–regular at x∗ with respect to h, if the vectors
{g(p)

i (x∗)[h]p−1, i ∈ I0(h)}, are linearly independent.

Definition 3.2. The mapping g(x) is called p–regular at x∗ if g is p-regular with respect to any
h such that I0(h) 6= ∅.

In the proof of the following theorem, we use Farkas’ lemma:

Lemma 3.3 (Farkas’ lemma). Let a1, . . . , ar, c ∈ Rn. Then

cT y ≥ 0

for all y such that aT
j y ≤ 0, j = 1, . . . , r, if and only if there exist nonnegative scalars µ1, . . . , µr

such that
c + µ1a1 + . . . + µrar = 0.

Theorem 3.4. Let U be some neighborhood of x∗ ∈ Rn, f ∈ C2(U), g ∈ Cp+1(U), and (19)
hold. Assume that mapping g(x) is p–regular at x∗. If x∗ is a local minimizer to (1), then

Ag(x∗) ⊂ Af (x∗). (40)

Moreover, for any h ∈ K(x∗), ‖h‖ = 1, there exists λ∗(h) = (λ∗i (h))i∈I0(h), λ∗i (h) ≥ 0, such that

∂Lp

∂x
(x∗, h, λ∗(h)) = f ′(x∗)−

∑

i∈I0(h)

λ∗i (h)g(p)
i (x∗)[h]p−1 = 0 (41)

and

〈∂
2Lp

∂x2
(x∗, h, λ̃∗(h))h, h〉 ≥ 0, λ̃∗(h) =

2λ∗(h)
p(p + 1)

. (42)

Remark. If there exists h ∈ K(x∗) such that I0(h) = ∅, then f ′(x∗) = 0.
Proof. To prove (40), assume on the contrary that x∗ is a local minimizer to (1), and there

exists h̄ ∈ Ag(x∗) with 〈f ′(x∗), h̄〉 < 0. Then, by Taylor expansion, since g(x) is p-regular at x∗,
there exists a sufficiently small t > 0 such that f(x∗ + th̄) < f(x∗) and g(x∗ + th̄) ≥ 0, which
contradicts the assumption that x∗ is a local minimizer. Hence, (40) holds.

Now, consider an element h ∈ K(x∗), and divide our consideration into two following cases:

(1) If I0(h) = ∅, then g
(p)
i (x∗)[h]p > 0 for all i ∈ I(x∗). Moreover, h ∈ K(x∗) implies

f ′(x∗)h = 0. If we assume that f ′(x∗) 6= 0, then there exists h̄ such that 〈f ′(x∗), h̄〉 < 0.
Then for a sufficiently small t > 0, we have g(x∗ + th + t3/2h̄) ≥ 0 and

f(x∗ + th + t3/2h̄) < f(x∗),

which contradicts the assumption that x∗ is a local minimizer. Hence,

f ′(x∗) = 0 (43)
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and (41) holds with λi(h) = 0 for all i ∈ I0(h). Moreover, using the Taylor expansion of
f(x∗ + th), (43), the assumption that x∗ is a local minimizer, the definition of function
L, and the property λi(h) = 0 for all i ∈ I0(h) we get

0 ≤ f(x∗ + th)− f(x∗) =
1
2

〈
f ′′(x∗)th, th

〉
+ o(t2) =

1
2
t2〈Lp

′′
xx(x∗, h, λ̃∗(h))h, h〉+ o(t2),

which yields (42).
(2) If I0(h) 6= ∅, then one can show that 〈f ′(x∗), z〉 ≥ 0 for any z such that g

(p)
i (x∗)[h]p−1z ≥

0, i ∈ I0(h), which implies (41) by Farkas Lemma 3.3.
Now, we will show that (42) holds in this case. Consider any h such that I0(h) 6= ∅.

Then g
(p)
i (x∗)[h]p = 0, i ∈ I0(h). Then by the generalized Lyusternik Theorem, there

exists r(t) and a sufficiently small ε > 0 such that for t ∈ (0, ε),

gi(x∗ + th + r(t)) = 0, ‖r(t)‖ = o(t), i ∈ I0(h).

Since x∗ is a local minimizer, f ′(x∗)h = 0, and ‖r(t)‖ = o(t), we get by using the Taylor
expansion

0 ≤ f(x∗ + th + r(t))− f(x∗) = f ′(x∗)r(t) +
1
2
f ′′(x∗)(th)2 + o(t2). (44)

Moreover, we have for every i ∈ I0(h) and t ∈ (0, ε),

0 = gi(x∗ + th + r(t)) =
= 1

p!g
(p)
i (x∗)[th + r(t)]p + 1

(p+1)!g
(p+1)
i (x∗)[th + r(t)]p+1 + o(tp+1) =

= p
p!g

(p)
i (x∗)[th]p−1r(t) + 1

(p+1)!g
(p+1)
i (x∗)[th]p+1 + o(tp+1).

(45)

Multiplying both parts of (45) by (p−1)!
tp−1 λ∗i (h) for every i ∈ I0(h) and subtracting the

resulting equations from (44) we get

0 ≤
〈

f ′(x∗)−
∑

i∈I0(h)

λ∗i (h)g(p)
i (x∗)[h]p−1, r(t)

〉
+

+
1
2
f ′′(x∗)(th)2 +

(p− 1)!
(p + 1)!

∑

i∈I0(h)

λ∗i (h)g(p+1)
i (x∗)[h]p−1(th)2 + o(t2).

Hence, by (41),

f ′′(x∗)(th)2 +
∑

i∈I0(h)

2
p(p + 1)

λ∗i (h)g(p+1)
i (x∗)[h]p−1(th)2 + o(t2) ≥ 0.

Dividing the last relation by t2 and taking the limit as t → 0 we get (42), which finishes
the proof.

3.2. New necessary optimality conditions in the general case. In this section, we con-
sider the general case. We assume that the vectors g′i(x

∗) are linearly dependent, i ∈ I(x∗), and
there exists an index j ∈ I(x∗) such that g′j(x

∗) 6= 0, where x∗ is a solution to (1). To make it
simpler, we first consider the case of p = 2.
The case of p = 2. Convert problem (1) to a problem with equality constraints by introducing
slack variables s2

i and replacing the inequalities gi(x) ≥ 0, i = 1, . . . ,m, by

gi(x)− s2
i = 0, si ∈ R, i = 1, . . . ,m.

By Lemma 2.10, if x∗ is a local minimizer to problem (1), (x∗, 0) is a local minimizer to the
following problem

minimize
(x, s)

f(x)

subject to Fi(x, s) = gi(x)− s2
i = 0, i ∈ I(x∗).

(46)
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Without loss of generality, assume that I(x∗) = {1, . . . , k}. Moreover, assume that the vectors
g′i(x

∗), i = 1, . . . , r, r < k, are linearly independent for some r ≥ 1. Then g′i(x
∗), i = r+1, . . . , k,

can be represented as a linear combination of g′1(x
∗), . . ., g′r(x∗) with some coefficients α1i, . . .,

αri.
By analogy with the procedure in [2], transform problem (46) into the following problem:

minimize
(x, s)

f(x)

subject to Fi(x, s) = 0, i = 1, . . . , r,

F̃i(x, s) = Fi(x, s)− α1iF1(x, s)− . . .− αriFr(x, s) = 0 i = r + 1, . . . , k,

(47)

where ∂ eFi
∂x (x∗, 0) = 0, i = r + 1, . . . , k. As was shown in [6], (x∗, 0) is a local minimizer to

problem (46) if and only if (x∗, 0) is a local minimizer to (47).
Introduce the mapping

F̄ (x, s) =




F1(x, s)
. . .

Fr(x, s)
F̃r+1(x, s)

. . .

F̃k(x, s)




. (48)

We use P⊥ to denote the orthoprojector onto (Im F̄ ′(x∗))⊥ in Rk, where (ImF̄ ′(x∗))⊥ is the
orthogonal complementary subspace of ImF̄ ′(x∗) in Rk. By definition of F̄ , matrix P⊥ is a
diagonal matrix, namely, P⊥ = diag(pj)k

j=1, where

pj =
{

0, j = 1, . . . , r,
1, j = r + 1, . . . , k

. (49)

We also use the following notation

g̃i(x) = gi(x)− α1ig1(x)− . . .− αrigr(x), i = r + 1, . . . , k (50)

where αji are defined in (47). Moreover, (47) implies that g̃′i(x
∗) = 0, i = r + 1, . . . , k.

For h ∈ Rn, define the 2-factor-Lagrange function as

L2(x, h, λ(h), γ(h)) = f(x)−
r∑

i=1

λi(h)gi(x)−
k∑

i=r+1

γi(h)(g̃′i(x)h),

where λ(h) = (λ1(h), . . . , λr(h)) and γ(h) = (γr+1(h), . . . , γk(h)).

Theorem 3.5 (Necessary conditions for optimality in the general case). Let x∗ be a local
minimum of problem (1), and let U ⊂ Rn be a neighborhood of the point x∗. Let the map-
ping F̄ be given by (48). Suppose that f ∈ C2(U,R) and that g ∈ C2(U,Rm). Assume that
I(x∗) = {1, . . . , k}. Moreover, assume that the vectors g′i(x

∗), i = 1, . . . , r, r < k, are linearly
independent for some r ≥ 1. Suppose that there exists h = (hx, hs), ‖h‖ = 1, such that

F̄ ′(x∗, 0)h = 0, P⊥F̄ ′′(x∗, 0)[h]2 = 0, (51)

and F̄ (x, s) is 2-regular at (x∗, 0) with respect to the element h. Then there exist multipliers
λ∗(h) = (λ∗1(h), . . . , λ∗r(h)) and γ∗(h) = (γ∗r+1(h), . . . , γ∗k(h)) such that

∂L2

∂x
(x∗, h, λ∗(h), γ∗(h)) = f ′(x∗)−

r∑

i=1

λ∗i (h)g′i(x
∗)−

k∑

i=r+1

γ∗i (h)g̃′′i (x∗)hx = 0, (52)

and
k∑

i=r+1

γ∗i (h)Aihs = 0, (53)
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where Ai, i = r + 1, . . . , k, is a diagonal k × k matrix given as Ai = diag(ai
j)

k
j=1,

ai
j =





2αj i, j = 1, . . . , r
−2, j = i

0, otherwise
, (54)

where αji are defined in (47).

Proof. All conditions of Theorem 2.8 hold for problem (47). By Theorem 2.8, we have

f ′(x,s)(x
∗) =

r∑

i=1

λ∗i (h)F ′
i (x

∗, 0) +
k∑

i=r+1

γ∗i (h)(F̃ ′′
i (x∗, 0)[h]).

The last relation is equivalent to the two following equalities:

f ′x(x∗) =
r∑

i=1
λ∗i (h)

(
∂Fi
∂x (x∗, 0)

)
+

k∑
i=r+1

γ∗i (h)
(

∂2 eFi
∂x2 (x∗, 0)hx

)
=

=
r∑

i=1
λ∗i (h)g′i(x

∗) +
k∑

i=r+1
γ∗i (h)(g̃′′i (x∗)hx)

(55)

and

0 = f ′s(x
∗) =

r∑

i=1

λ∗i (h)
(

∂Fi

∂s
(x∗, 0)

)
+

k∑

i=r+1

γ∗i (h)

(
∂2F̃i

∂s2
(x∗, 0)hs

)
. (56)

We have for i = 1, . . . , r, ∂ eFi
∂s (x∗, 0) = −2si|si=0 = 0, and for i = r + 1, . . . , k,

∂2F̃i

∂s2
=

(i)




(i)
2α1i 0 . . . 0 0 0 . . . 0

0 2α2i . . . 0 0 0 . . . 0
. . . . . . . . .

0 0 . . . 2αri 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 −2 0 . . . 0
0 0 . . . 0 0 0 . . . 0




= Ai,

where Ai is defined in (54). Then from (55) we obtain (52), and from the last equation and (56)
we get

0 =
k∑

i=r+1

γ∗i (h)

(
∂F̃i

∂s2
(x∗, 0)hs

)
=

k∑

i=r+1

γ∗i (h)
(
Aihs

)
,

that is (53).
The following theorem is a specific case of Theorem 3.5.

Theorem 3.6 (Necessary conditions for optimality). Let x∗ be a local minimum of problem (1),
and let U ⊂ Rn be a neighborhood of the point x∗. Assume that f ∈ C2(U,R), g ∈ C2(U,Rm),
and that I(x∗) = {1, . . . , k}. Assume also that there exists ‖h‖ = 1, such that the vectors
g′1(x

∗),. . . , g′r(x∗), g̃′′r+1(x
∗)h, . . . , g̃′′k(x∗)h are linearly independent, and

g′i(x
∗)h = 0, i = 1, . . . , r,

g̃′′i (x∗)[h]2 = 0, i = r + 1, . . . , k,
(57)

where g̃i are defined in (50). Then there exist multipliers λ∗(h) = (λ∗1(h), . . . , λ∗r(h)) and γ∗(h) =
(γ∗r+1(h), . . . , γ∗k(h)) such that

∂L2

∂x
(x∗, h, λ∗(h), γ∗(h)) = f ′(x∗)−

r∑

i=1

λ∗i (h)g′i(x
∗)−

k∑

i=r+1

γ∗i (h)g̃′′i (x∗)h = 0. (58)
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Proof. All conditions of Theorem 3.5 are satisfied with hs = 0 and hx = h, where h is defined
in (57). Then (52) yields (58), and (53) transforms into 0 ≡ 0.

Introduce the following definitions. Recall that, to simplify the notation, we assume that
I(x∗) = {1, . . . , k}. Moreover, we assume that the first r row vectors of the partial derivatives
of the active constraints g′i(x

∗), i = 1, . . . , r, r < k, are linearly independent for some r ≥ 1.

Definition 3.7. We say that the vector of constraints g(x) = (g1(x), . . . gm(x)) is 2-regular at
the feasible point x∗ with respect to the vector h = (hx, hs) ∈ Rn+k, ‖h‖ = 1, satisfying (51), if
for I(x∗) = {1, . . . , k}, the mapping F̄ (x, s) is 2-regular at (x∗, 0) with respect to the vector h,
where F̄ (x, s) is defined in (48).

In the case when hs = 0, Definition 3.7 reduces to the following one.

Definition 3.8 (2-regularity constraint qualification). Given a point x∗ and the active set I(x∗),
we say that the 2-regularity constraint qualification holds at the feasible point x∗ with respect to
a vector h ∈ Rn if x∗ is strictly feasible or if the row vectors g′1(x

∗), . . . , g′r(x∗), g̃′′r+1(x
∗)h,

. . . , g̃′′k(x∗)h are linearly independent.

Definition 3.8 can be viewed as the p-regularity constraint qualification (PRCQ) in the general
case with p = 2.

Definition 3.9. We say that problem (1) is 2-regular if F̄ (x, s) is 2-regular at (x∗, 0) with
respect to any element h satisfying (51), where F̄ (x, s) is defined in (48).

Using Definitions 3.7, 3.8, and 3.9, we can reformulate the theorems presented in this section
in terms of 2-regular problems.
The case of p > 2. Without loss of generality, assume that I(x∗) = {1, . . . , k}. Then similarly
to the transformation described in the beginning of this section, in the case of p > 2, we can
introduce slack variables s2q

i , q = [p + 1]/2, and transform problem (1) into the equivalent form

minimize
(x, s)

f(x)

subject to Fi(x, s) = gi(x)− s2q
i = 0, i = 1, . . . , k.

Assume that g′1(x
∗), . . ., g′r1

(x∗) are linearly independent and transform Fi(x, s), i = r1 +
1, . . . , m, in such a way that for some r2 ≤ r3 ≤ . . . ≤ rp−1 ≤ . . . ≤ k the following holds

F̃ ′
i (x

∗, 0) = 0, i = r1 + 1, . . . , k,

F̃ ′′
i (x∗, 0) = 0, i = r2 + 1, . . . , k,

. . .

F̃
(p−1)
i (x∗, 0) = 0, i = rp−1 + 1, . . . , k.

(59)

The following theorem is a generalization of Theorem 3.5.

Theorem 3.10 (Necessary conditions for optimality). Let x∗ be a local minimum of problem (1),
and let U ⊂ Rn be a neighborhood of the point x∗. Assume that f ∈ Cp(U,R), g ∈ Cp(U,Rm),
and that I(x∗) = {1, . . . , k}. Assume also that there exist r1 ≤ r2 ≤ . . . ≤ rp−1 ≤ . . . ≤ k such
that g′1(x

∗), . . ., g′r1
(x∗) are linearly independent and (59) holds. Moreover, assume that there

is ‖h‖ = 1 such that the vectors F ′
1(x

∗, 0), . . . , F ′
r1

(x∗, 0), F̃r1+1
′′(x∗, 0)h, . . . , F̃r2

′′(x∗, 0)h, . . .

F̃
(p)
rp−1+1(x

∗, 0)[h]p−1, . . . , F̃
(p)
k (x∗, 0)[h]p−1 are linearly independent, and

F ′
i (x

∗, 0)h = 0, i = 1, . . . , r1,

F̃i
′′(x∗, 0)[h]2 = 0, i = r1 + 1, . . . , r2,

. . .

F̃
(p)
i (x∗, 0)[h]p = 0, i = rp−1 + 1, . . . , k.

(60)
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Then there exist multipliers λ∗1(h), . . . , λ∗k(h) such that

(
f ′(x∗)

0

)
=

r1∑

i=1

λ∗i (h)F ′
i (x

∗, 0)+
r2∑

i=r1+1

λ∗i (h)F̃ ′′
i (x∗, 0)h+ . . .+

k∑

i=rp−1+1

λ∗i (h)F̃ (p)
i (x∗, 0)[h]p−1.

(61)

Proof. The proof of this theorem is similar to that of Theorem 3.5.
In the next theorem, we present a generalization of Theorem 3.6 for the case of p > 2.
Consider problem (1) and without loss of generality, assume again that I(x∗) = {1, . . . , k}.

Moreover, assume that the first r1 row vectors g′i(x
∗), i = 1, . . . , r1, r1 < k, are linearly inde-

pendent for some r1 ≥ 1.
Consider a special case of problem (1), when functions gi(x) satisfy the relations (63) similar

to ones given in (59):

minimize
x∈Rn

f(x) subject to g(x) = (g1(x), . . . , gr1(x), gr1+1(x), . . . , gm(x)) ≥ 0, (62)

where
g′i(x

∗) = 0, i = r1 + 1, . . . , k,
g′′i (x∗) = 0, i = r2 + 1, . . . , k,
. . .

g
(p−1)
i (x∗) = 0, i = rp−1 + 1, . . . , k,

(63)

and r1 ≤ r2 ≤ . . . ≤ rp−1 ≤ . . . ≤ k.

Theorem 3.11 (Necessary conditions for optimality). Let x∗ be a local minimum of problem (1),
and let U ⊂ Rn be a neighborhood of the point x∗. Assume that f ∈ Cp(U,R), g ∈ Cp(U,Rm),
and that I(x∗) = {1, . . . , k}. Assume also that there exists ‖h‖ = 1, such that the vectors

g′1(x
∗), . . . , g′r1

(x∗), gr1+1
′′(x∗)h, . . . , gr2

′′(x∗)h, . . . g
(p)
rp−1+1(x

∗)[h]p−1, . . . , g
(p)
k (x∗)[h]p−1

are linearly independent, and

g′i(x
∗)h = 0, i = 1, . . . , r1,

gi
′′(x∗)[h]2 = 0, i = r1 + 1, . . . , r2,

. . .

g
(p)
i (x∗)[h]p = 0, i = rp−1 + 1, . . . , k.

(64)

Then there exist multipliers λ∗1(h), . . . , λ∗k(h), λ∗i (h) ≥ 0, i = 1, . . . , k, such that

f ′(x∗) =
r1∑

i=1

λ∗i (h)g′i(x
∗) +

r2∑

i=r1+1

λ∗i (h)g′′i (x∗)h + . . . +
k∑

i=rp−1+1

λ∗i (h)g(p)
i (x∗)[h]p−1. (65)

Proof. The proof of this theorem is similar to that of Theorem 3.5.
Remark. In general case, we cannot guarantee that the Lagrange multipliers λ∗i (h), i =

1, . . . , k, are nonnegative. As an example, consider the problem:

minimize
x∈R2

x2 subject to x3
1 − x2 ≥ 0, x3

2 − x12
1 ≥ 0,

One can verify that x∗ = (0, 0) is a minimizer with λ∗ = (0,−1).

4. Sufficient conditions for optimality

In this section, we derive new sufficient conditions for optimality.
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4.1. The completely degenerate case for an arbitrary p ≥ 2. In this section we propose
new sufficient optimality conditions for the completely degenerate case (19). The necessary
conditions for the case presented in Theorem 4.1 are given in Theorem 2.12.

Theorem 4.1 (The pth order sufficient conditions for optimality in the case of an even p and
Ĥp(x∗) = {0}). Let x∗ be a feasible point for problem (1), let U ⊂ Rn be a neighborhood of the
point x∗, and let (19) hold with an even p. Let the set H̃p(x∗, 0) be defined by (25), and let
Fi(x, s), i = 1, . . . ,m, be defined by (22). Suppose that f ∈ C2(U,R) and that g ∈ Cp+1(U,Rm).
Suppose also that for any h = (hx, hs) ∈ H̃p(x∗, 0), h 6= 0, the vectors F

(p)
i (x∗, 0)[(hx, hs)]p−1,

i ∈ I(x∗), are linearly independent. Moreover, assume that for any h = (hx, hs) ∈ H̃p(x∗, 0),
h 6= 0, there exist α > 0 and a Lagrange multiplier vector λ∗(h), with components λ∗i (h) ≥ 0,
i ∈ I(x∗), such that the necessary conditions (27)–(28) hold and

∂2L̄p

∂x2
(x∗, h, λ̃∗(h))[hx]2 ≥ α‖hx‖2, λ̃∗(h) =

2λ∗(h)
p(p + 1)

. (66)

Then x∗ is an isolated solution to problem (1).

Proof. Let z = (x, s) and z∗ = (x∗, 0). Introduce the function:

Lp(z, h, λ(h)) = f(x)− 〈λ(h), F (p−1)(z)[hx, hs]p−1〉 =
= f(x)− ∑

i∈I(x∗)
λi(h)F (p−1)

i (z)[hx, hs]p−1.

By the assumption of the theorem (27) and (28) hold, which implies that
∂Lp

∂z
(z∗, h, λ∗(h)) = 0

or that (17) is satisfied. Moreover, it follows from (28) and (66) that

∂2Lp

∂z2

(
z∗, h, λ̃∗(h)

)
[h]2 =

[
(L̄p)′′xx 0

0 0

] [
hx

hs

]2

=
∂2L̄p

∂x2
[hx]2 ≥ α‖hx‖2.

Since for any h = (hx, hs) ∈ H̃p(x∗, 0), h 6= 0, the vectors F
(p)
i (x∗, 0)[(hx, hs)]p−1, i ∈ I(x∗), are

linearly independent, there exists α1 such that

α‖hx‖2 ≥ α1‖h‖2 for all h = (hx, hs) ∈ H̃p(x∗, 0).

Thus, the sufficient conditions given in Theorem 2.8 hold for problem (24) at z∗.
Then

∂2Lp

∂z2

(
z∗, h, λ̃∗(h)

)
[h]2 ≥ α1‖h‖2,

and by sufficient conditions given in Theorem 2.8, z∗ = (x∗, 0) is a local minimizer to problem
(24). Hence, by Lemma 2.10, x∗ is an isolated solution to problem (1).

Theorem 4.1 gives new sufficient conditions for problem (1), but its statement contains func-
tions Fi(x, s) introduced in (23) and the set H̃p(x∗, 0) defined in (25).

The next theorem is a reformulation of Theorem 4.1.

Theorem 4.2 (The pth order sufficient conditions for optimality). Let x∗ be a feasible point for
problem (1), let U ⊂ Rn be a neighborhood of the point x∗, and let (19) hold with an even p.
Suppose that f ∈ C2(U,R) and that g ∈ Cp+1(U,Rm). Suppose also that for any h ∈ H̄p(x∗)\{0},
vectors g

(p)
i (x∗)[h]p−1, i ∈ I(x∗), are linearly independent, and there exists a vector λ∗(h) ≥ 0

and α > 0 such that (37)–(39) hold and

∂2Lp

∂x2
(x∗, h, λ̃∗(h))[h]2 ≥ α‖h‖2, λ̃∗(h) =

2λ∗(h)
p(p + 1)

. (67)

Then x∗ is an isolated solution to problem (1).
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The following theorem complements the necessary conditions stated in Theorem 3.4. We use
the notation that is introduced in Section 3.1.

Theorem 4.3. Let U be some neighborhood of x∗ ∈ Rn, f ∈ C2(U), g ∈ Cp+1(U), and (19)
and (40) hold. Assume that g(x) is p–regular at x∗. Assume also that for any h ∈ K(x∗), there
exist β > 0 and λ∗(h) ≥ 0 such that (41) holds and

〈∂
2Lp

∂x2
(x∗, h, λ̃∗(h))h, h〉 ≥ β‖h‖2, λ̃∗p(h) =

2λ∗p
p(p + 1)

.

Then x∗ is an isolated local minimizer of (1).

Proof. Assume on the contrary that x∗ is not a local minimizer. Then there exists a sequence
{xk} → x∗ such that f(xk) < f(x∗) and g(xk) ≥ 0. Consider a sequence (we use the same
notation for the sequence and its convergent subsequence)

{
xk−x∗
‖xk−x∗‖

}
that converges to some

element h̃. Then
xk = x∗ + ‖xk − x∗‖h̃ + w(xk) = x∗ + th̃ + ξk,

‖w(xk)‖ = o(‖xk − x∗‖).
Observe that h̃ ∈ Ag(x∗) and consider two cases:

(1) If 〈f ′(x∗), h̃〉 > 0, then

f(xk) = f(x∗) +
〈
f ′(x∗), ‖xk − x∗‖h̃

〉
+ ξ(xk) > f(x∗),

which is a contradiction, so this case does not hold.
(2) If 〈f ′(x∗), h̃〉 = 0, then there exists λ(h̃) ≥ 0 such that

f(xk)− f(x∗) ≥ f(xk)− f(x∗)− (p− 1)!
tp−1

∑

i∈I0(h̃)

λ∗i (h̃)gi(xk) =

= f ′(x∗)(xk − x∗) +
1
2
f ′′(x∗)(xk − x∗)2 −

− 1
ptp−1

∑

i∈I0(h̃)

λ∗i (h̃)g(p)
i (x∗)[xk − x∗]p −

− 1
p(p + 1)tp−1

∑

i∈I0(h̃)

λ∗i (h̃)g(p+1)
i (x∗)[xk − x∗]p+1 + o((xk − x∗)2) =

=

〈
f ′(x∗)−

∑

i∈I0(h̃)

λ∗i (h̃)g(p)
i (x∗)[h̃]p−1, ξk

〉
+

+
1
2

〈
f ′′(x∗)− 2

p(p + 1)

∑

i∈I0(h̃)

λ∗i (h̃)g(p+1)
i (x∗)[h̃]p−1, (th̃)2

〉
+ o(t2) ≥

≥ α

2
‖th̃‖2 + o(t2) > 0,

which contradicts the assumption f(xk) < f(x∗). Hence, x∗ is a strict local minimizer.

4.2. General case. In the next theorem, we present new sufficient conditions for optimality.
The first order necessary conditions for the corresponding classes of nonregular problems are
given in Theorem 3.5.

Theorem 4.4 (Sufficient conditions for optimality). Let x∗ be a feasible point for problem
(1), and let U ⊂ Rn be a neighborhood of the point x∗. Suppose that f ∈ C2(U,R) and that
g ∈ C2(U,Rm). Suppose also that for any h = (hx, hs), ‖h‖ = 1, satisfying (51), F̄ (x, s) is
2-regular at (x∗, 0) with respect to the element h. Moreover, assume that for any h = (hx, hs),
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‖h‖ = 1, hx 6= 0, satisfying (51), there exist multipliers λ∗(h) = (λ∗1(h), . . . , λ∗r(h)) and γ∗(h) =
(γ∗r+1(h), . . . , γ∗k(h)) such that (52)–(53) hold, and

∂2L2

∂x2

(
x∗, h, λ∗(h),

γ∗(h)
3

)
[hx]2 ≥ α‖hx‖2. (68)

Then x∗ is an isolated local minimum of problem (1).

Proof. The proof of this theorem is similar to that of Theorem 4.1. Namely, the sufficient
conditions given in Theorem 2.8 hold for problem (47) at (x∗, 0). Thus x∗ is an isolated solution
to (1).

The following theorem is a specific case of Theorem 4.4.

Theorem 4.5 (Sufficient conditions for optimality). Let x∗ be a feasible point for problem (1),
and let U ⊂ Rn be a neighborhood of the point x∗. Suppose that f ∈ C2(U,R) and that g ∈
C2(U,Rm). Suppose also that for any h, ‖h‖ = 1, satisfying (57), the vectors g′1(x

∗),. . . , g′r(x∗),
g′′r+1(x

∗)h, . . . , g′′k(x∗)h are linearly independent. Moreover, assume that for any h, ‖h‖ = 1,
hx 6= 0, satisfying (51), there exist multipliers λ∗i and γ∗i (h) such that (58) holds, and

∂2L2

∂x2

(
x∗, h, λ∗(h),

γ∗(h)
3

)
[h]2 ≥ α‖h‖2. (69)

Then x∗ is an isolated local minimum of problem (1).

Remark 4.1. Observe that we cannot drop the assumption hx 6= 0 in both Theorem 4.4 and
Theorem 4.5. For example, consider the problem

minimize
x∈Rn

f(x) = −x2
1 − x2

2 subject to − x1 ≥ 0, −x2 ≥ 0.

Observe that assumptions of Theorem 4.4 and Theorem 4.5 are not satisifed with hx 6= 0 at
x∗ = 0, and indeed 0 is not a local minimizer.

In the next theorem, we present new sufficient conditions for optimality in the general case of
p ≥ 2. The first order necessary conditions for the corresponding classes of nonregular problems
are given in Theorem 3.11.

Recall a specific form of the optimization problem that we introduce earlier in (62):

minimize
x∈Rn

f(x) subject to g(x) = (g1(x), . . . , gr1(x), gr1+1(x), . . . , gm(x)) ≥ 0,

where g(x) satisfies (63):

g′i(x
∗) = 0, i = r1 + 1, . . . , k,

g′′i (x∗) = 0, i = r2 + 1, . . . , k,
. . .

g
(p−1)
i (x∗) = 0, i = rp−1 + 1, . . . , k,

and r1 ≤ r2 ≤ . . . ≤ rp−1 ≤ . . . ≤ k.
Introduce the following notation: I(x∗) = {1, . . . , k},

Ag(x∗) = {h ∈ Rn | g′i(x
∗)[h] ≥ 0, i = 1, . . . , r1,

g′′i (x∗)[h]2 ≥ 0, i = r1 + 1, . . . , r2,

...
g
(p)
i (x∗)[h]p ≥ 0, i = rp−1 + 1, . . . , k},

Ij
0(h) = {i ∈ {rj−1 + 1, . . . , rj} | g(j)

i (x∗)[h]j = 0, h ∈ Ag(x∗)}, j = 1, . . . , p,

K(x∗) = Ag(x∗)
⋂

Kerf ′(x∗).
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Definition 4.6. Mapping g(x) is called p-regular at x∗ with respect to vector h if the vectors

{g′i(x∗), i ∈ I1
0 (h); g′′i (x∗)[h], i ∈ I2

0 (h); . . . , g(p)
i (x∗)[h]p−1, i ∈ Ip

0 (h)}
are linearly independent.

Definition 4.7. Mapping g(x) is called p-regular at x∗ if g(x) is p-regular at x∗ with respect to
any vector h such that

{I1
0 (h) ∪ I2

0 (h) ∪ . . . ∪ Ip
0 (h)} 6= ∅.

Introduce a generalization of the Lagrange function:

Lp(x, h, λ(h)) = f(x)−
∑

i∈I1
0 (h)

λ1
i (h)gi(x)−

∑

i∈I2
0 (h)

λ2
i (h)g′i(x)[h]−. . .−

∑

i∈Ip
0 (h)

λp
i (h)(g(p−1)

i (x)[h]p−1,

where λ(h) = (λ1(h), . . . , λp(h)) and λj(h) = (λi(h))
i∈Ij

0(h)
, j = 1, . . . , p.

Theorem 4.8 (Sufficient conditions for optimality). Let x∗ be a feasible point for problem
(1), and let U ⊂ Rn be a neighborhood of the point x∗. Suppose that f ∈ C2(U,R) and that
g ∈ Cp+1(U,Rm). Assume that Ag(x∗) ⊂ Af (x∗). Assume also that g(x) is p-regular at x∗ and
that for any h ∈ K(x∗) there exists λ∗(h), λ∗(h) ≥ 0, and β > 0 such that

∂Lp

∂x
(x∗, h, λ∗(h)) = 0

and 〈
∂2Lp

∂x2
(x∗, h, λ̃∗(h))h, h

〉
≥ β‖h‖2,

where

λ̃∗(h) =
(

λ1∗(h),
1
3
λ2∗(h), . . . ,

2
i(i + 1)

λi∗(h), . . . ,
2

p(p + 1)
λp∗(h)

)
.

Then x∗ is an isolated local minimum of problem (1).

The proof is similar to one of Theorem 4.3.

5. Mangasarian-Fromovitz constraint qualification (MFCQ) and 2-regularity
condition

In this section, we present a new result stating that the 2-regularity condition given in Defi-
nition 3.7 is weaker than the MFCQ. Namely, there are examples in which the MFCQ does not
hold, while the 2-regularity does. One such example is Example 1 given in the next section. On
the other hand, any problem that satisfies the MFCQ is 2-regular with respect to some vector h
in the sense of Definition 3.7. To prove this statement, we will construct the vector h satisfying
Definition 3.7.

Theorem 5.1. Assume that the Mangasarian-Fromovitz constraint qualification holds at a fea-
sible point x∗ for the vector of constraints g(x) = (g1(x), . . . gm(x)) in problem (1). Then there
exists a vector h such that g(x) is 2-regular at x∗ with respect to the vector h in the sense of
Definition 3.7.

Proof. Consider constraints of problem (1)

gi(x) ≥ 0, i = 1, . . . , m, (70)

and assume that the MFCQ holds at x∗, that is, there exists a vector ν such that

g′i(x
∗)ν > 0 for all i ∈ I(x∗). (71)

Conditions (71) imply that the vectors g′i(x
∗) 6= 0, i = 1, . . . , m.

Without loss of generality, assume that I(x∗) = {1, . . . , k}. Moreover, assume that the vectors
g′i(x

∗), i = 1, . . . , r, r < k, are linearly independent for some r ≥ 1.
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Since the vectors g′1(x
∗), . . . , g′r(x∗) are linearly independent, then the vectors g′i(x

∗), i =
r+1, . . . , k, can be represented as a linear combination of g′1(x

∗), . . ., g′r(x∗) with some coefficients
α1i, . . ., αri, which are not all equal to zero. By using the constraint transformation described
in the beginning of Section 3.2 we get

Fi(x, s) = gi(x)− s2
i , i = 1, . . . , r,

F̃i(x, s) = Fi(x, s)− α1iF1(x, s)− . . .− αriFr(x, s) =
= gi(x)− s2

i − α1i(g1(x)− s2
1)− . . .− αri(gr(x)− s2

r) =
= gi(x)− s2

i − (α1ig1(x) + . . . + αrigr(x)) + (α1is
2
1 + . . . + αris

2
r),

i = r + 1, . . . , k
(72)

where ∂ eFi
∂x (x∗, 0) = 0, i = r + 1, . . . , k.

Introduce the mapping

F̄ (x, s) =




F1(x, s)
. . .

Fr(x, s)
F̃r+1(x, s)

. . .

F̃k(x, s)




. (73)

Define the vector h = (hx, hs), hx ∈ Rn, hs = (hs1, . . . , hsk), as follows: hx = 0,

(hsi)
2 =

{
g′i(x

∗)ν, i = 1, . . . , r
α1ih

2
s1 + . . . + αrih

2
sr, i = r + 1, . . . , k

, (74)

where ν is defined in (71). We will show that the vector h satisfies (51). First, we observe
that (hsi)

2 > 0 for all i = 1, . . . , k. Namely, by (71), g′i(x
∗)ν > 0, i = 1, . . . , r. Moreover, for

i = r + 1, . . . , k, (71), (72), (74), and F̃ ′
i (x

∗, 0) = 0 yield that

α1ih
2
s1 + . . . + αrih

2
sr = α1ig

′
1(x

∗)ν + . . . + αrig
′
r(x

∗)ν = g′i(x
∗)ν > 0.

Thus (hsi)
2 > 0 for all i = 1, . . . , k and, hence, h 6= 0.

Since hx = 0 and F̄ ′
s(x

∗, 0) = 0, then h ∈ Ker F̄ ′(x∗, 0). By definition of the vector hs given
in (74), h ∈ Ker2 P⊥F̄ ′′(x∗, 0). Thus

h ∈ {Ker F̄ ′(x∗, 0) ∩Ker2 P⊥F̄ ′′(x∗, 0)}.
Hence, the vector h satisfies (51).

Consider the 2-factor-operator, which is defined by (2.6),

Ψ2(x∗, 0) = F̄ ′(x∗, 0) + P⊥F̄ ′′(x∗, 0)h

=




g′1(x
∗) 0 . . . 0 0 . . . 0 0

. . . . . . . . .
g′r(x∗) 0 . . . 0 0 . . . 0 0

0 2α1r+1hs1 . . . 2αrr+1hsr −2hsr+1 0 . . . 0
0 2α1r+2hs1 . . . 2αrr+2hsr 0 −2hsr+2 . . . 0

. . . . . . . . .
0 2α1khs1 . . . 2αrkhsr 0 . . . 0 −2hsk




Since (hsi)
2 > 0, i = r + 1, . . . , k, and the vectors g′1(x

∗), . . ., g′r(x∗) are linearly independent,
then the matrix Ψ2(x∗, 0) has the full rank. Thus, by Definition 2.7, the mapping F̄ (x, s) is
2-regular at (x∗, 0) with respect to the element h and hence, g(x) is 2-regular at x∗ with respect
to the vector h in the sense of Definition 3.7.
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6. Examples

Example 6.1. Consider the following problem

minimize
x∈R2

f(x)

subject to −x4
1 + x2 ≥ 0,

3x4
1 − x2 ≥ 0.

(75)

Assume that x∗ = (0, 0)T is a local minimum of problem (75). We will show that all conditions
of Theorem 3.10 are satisfied for (75). In our notation, r1 = 1, p = 4, r2 = r3 = 1 and k = 2.

By introduction of the slack variables we obtain

F1(x, s) = −x4
1 + x2 − s4

1 = 0
F2(x, s) = 3x4

1 − x2 − s4
2 = 0

Transform the mapping F (x, s) = (F1(x, s), F2(x, s)) into the following one

F1(x, s) = −x4
1 + x2 − s4

1 = 0
F̃2(x, s) = F2(x, s)− α12F1(x, s) = 2x4

1 − s4
1 − s4

2 = 0

where α12 = −1. Observe that the conditions of Theorem 3.10 hold with h = (h1, h2, h3, h4) =
1

1+
√

2
(1, 0, 4

√
2, 0). Hence, by Theorem 3.10, we get that there exist multipliers λ∗1(h) and λ∗2(h)

such that (
f ′(x∗)

0

)
= λ∗1(h)F ′

1(x
∗) + λ∗2(h)(F̃ (4)

2 (x∗)h3)T (76)

or 


f ′x1
(x∗)

f ′x2
(x∗)
0
0


 = λ∗1(h)




0
1
0
0


 +

1
1 +

√
2
λ∗2(h)




48
0

−24 4
√

23

0


 .

The last equality yields λ∗2(h) = 0.
Next example illustrates the sufficient conditions given in Theorem 4.2.
Example 6.2. Isoperimetrical problem in Calculus of Variations. A slightly modified version

of this example was used in [6] to illustrate the necessary optimality conditions. Here, we verify
that the sufficient conditions given in Theorem 4.2 hold with p = 4 and x∗ = (0, 0).

Consider the problem of minimizing the functional

J0[y] =

3/2∫

−3/2

y2dx (77)

subject to the constraints

3/2∫

−3/2

((y′)4 − y4)dx ≥ 0, y(−3/2) = y(3/2) = 0. (78)

It can be shown that y∗(x) = 0 is a 4–regular solution of the problem (77)–(78).
We consider a discretization of the problem (77)–(78):

minimize
x∈R2

f(x1, x2) = x2
1 + x2

2 subject to g(x1, x2) = 2(x1 − x2)4 − x4
2 ≥ 0. (79)

We have

H̄4(x∗) = {h ∈ R2 | g(4)(x∗)[h]4 ≥ 0} = {h ∈ R2 | ( 4
√

2h1− ( 4
√

2+1)h2)(
4
√

2h1− ( 4
√

2−1)h2) ≥ 0}.
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For any vector h in H̄4(x∗)\{0}, the vector g(4)(x∗)[h]3 is nonzero. Moreover, in this example,
(37)–(39) hold with λ∗(h) = 0 for any h. Furthermore, since

∂2L2

∂x2
(x)[h]2 = f ′′(x)[h]2 = 2h2

1 + 2h2
2 ≥ 2‖h‖2,

then (67) holds at x∗ = (0, 0)T with any h. Thus, by Theorem 4.2, (0, 0)T is the isolated solution
to problem (79).

The following example illustrates an application of Theorem 3.11 and Theorem 4.8.
Example 6.3. Consider the problem:

minimize
x∈R2

f(x) = x2

subject to g1(x) = x1 + x2 − x3 − x2
3 + x3

2 ≥ 0,

g2(x) = (−x1 + x2 + x3)(x4
1 + x4

2 + x4
3) + x6

1 − |x1|13/2 ≥ 0
(80)

The point x∗ = (0, 0, 0) is a local minimum of (80).
We will show that all the conditions of Theorem 3.11 hold at x∗ with p = 5.
Both constraints, g1(x) and g2(x), are active at x∗, so I(x∗) = {1, 2}, k = 2, and r1 = 1.

Moreover,

g2
′(x∗) = 0, g2

′′(x∗) = 0, g′′′2 (x∗) = 0, g
(4)
2 (x∗) = 0,

so (63) hold at x∗ with g̃2 = g2 and with r1 = r2 = r3 = r4 = 1.
We have

g1
′(x∗) =




1
1
−1


 , g̃

(5)
2 (x∗)[h]4 = 24



−5h4

1 + 4h3
1h2 + 4h3

1h3 − h4
2 − h4

3

h4
1 − 4h1h

3
2 + 5h4

2 + 4h3
2h3 + h4

3

h4
1 + h4

2 − 4h1h
3
3 + 4h2h

3
3 + 5h4

3


 (81)

As is easy to verify, the vector h = (h1, h2, h3)T = (1, 0, 1)T satisfies equations (64), which, in
this example, are the following:

h1 + h2 − h3 = 0
(−5h4

1 + 4h3
1h2 + 4h3

1h3 − h4
2 − h4

3)h1+
+(h4

1 − 4h1h
3
2 + 5h4

2 + 4h3
2h3 + h4

3)h2+
+(h4

1 + h4
2 − 4h1h

3
3 + 4h2h

3
3 + 5h4

3)h3 = 0

For h = (h1, h2, h3)T = (1, 0, 1)T , vectors

g′1(x
∗) =




1
1
−1


 and g̃

(5)
2 (x∗)[h]4 = 48



−1
1
1




are linearly independent. Thus, all conditions of Theorem 3.11 are satisfied and, by Theorem
3.11, there exist multipliers λ∗1 = 1/2 and λ∗2 = 1/96 such that (65) holds, i.e.,

f ′(x∗) =
1
2
g′1(x

∗) +
1
96

g̃
(5)
2 (x∗)[h]4,




0
1
0


 =

1
2




1
1
−1


 +

48
96



−1
1
1




Now, we will illustrate sufficient conditions stated in Theorem 4.8.
In this example,

Ag(x∗) = {h ∈ R3 | g′1(x∗)[h] ≥ 0, g
(5)
2 (x∗)[h]5 ≥ 0} =

= {h ∈ R3 | h1 + h2 − h3 ≥ 0, −h1 + h2 + h3 ≥ 0} ⊂
⊂ Af = {h ∈ R3 | h2 ≥ 0}.

Moreover,
Kerf ′(x∗) ∩Ag(x∗) = {h ∈ R3 | h2 = 0, h1 = h3}.
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Then

f ′(x∗) = λ1g
′
1(x

∗) + 48λ2h
4
1g̃

(5)
2 (x∗)[h]4,




0
1
0


 = λ1




1
1
−1


 + 48λ2h

4
1



−1
1
1




where λ1 = 1/2 and λ2 = 1/(96h4
1).

Furthermore, there exists β ∈ (0, 1/8) such that
〈

∂2L5

∂x2
(x∗, h, λ̃∗(h))h, h

〉
= 1/4h2

1 ≥ β‖h‖2.

Hence, all assumptions of Theorem 4.8 hold and x∗ is a local minimizer of problem (80).

The following example illustrates an application of Theorem 3.10.
Example 6.4. Consider the problem:

minimize
x∈R3

f(x) = x2
2 + x3

subject to g1(x) = −x2
1 + x2

2 − x2
3 − x5

2 − x3
1x

2
3 + |x1|13/2 ≥ 0,

g2(x) = −x2
1 + x2

2 − x2
3 − 2x2x3 − x5

3 − x2
2x

3
3 + |x2|13/2 ≥ 0

g3(x) = 2x2
1 − 2x2

2 + 2x2
3 + 2x2x3 + x4

1 + x4
2 + x4

3 − x5
1 − x2x

6
3 + |x3|13/2 ≥ 0

(82)
The point x∗ = (0, 0, 0) is a local minimum of (82) and I(x∗) = {1, 2, 3}. By introducing s4

i ,
i = 1, 2, 3, we reduce the inequality constraints to the equality ones:

F1(x, s) = −x2
1 + x2

2 − x2
3 − x5

2 − x3
1x

2
3 − s4

1 = 0,
F2(x, s) = −x2

1 + x2
2 − x2

3 − 2x2x3 − x5
3 − x2

2x
3
3 − s4

2 = 0,
F3(x, s) = 2x2

1 − 2x2
2 + 2x2

3 + 2x2x3 + x4
1 + x4

2 + x4
3 − x5

1 − x2x
6
3 − s4

3 = 0.

By applying the transformation described in Section 3.2 we can reduce the constraints to the
equivalent form:

F1(x, s) = −x2
1 + x2

2 − x2
3 − x5

2 − x3
1x

2
3 − s4

1 = 0,
F2(x, s) = −x2

1 + x2
2 − x2

3 − 2x2x3 − x5
3 − x2

2x
3
3 − s4

2 = 0,

F̃3(x, s) = x4
1 + x4

2 + x4
3 − x5

1 − x2x
6
3 − x5

2 − x3
1x

2
3 − x5

3 − x2
2x

3
3 − s4

1 − s4
2 − s4

3 = 0.
(83)

In the notation of Theorem 3.10, we have k = 3, r1 = 0, r2 = 2, r3 = 2, and p = 4. Moreover,
for h = (1, 1, 0, 1, 1, 0)T , the vectors

F ′′
1 (x∗, 0)h, F ′′

2 (x∗, 0)h, and F̃
(4)
3 (x∗, 0)[h]3

are linearly independent. In addition, the equalities (59) and (60) hold. Hence, all assumptions
of Theorem 3.10 are satisfied and there exist multipliers λ∗1 = 1/2, λ∗2 = −1/2 and λ∗3 = 0 such
that (61) holds.

7. Comparison with other work and concluding remarks

In this paper we extended the results from [5] and [6] to new classes of nonregular optimization
problems. The closest results to ours are those obtained in the work of Izmailov [14, 15] and
of Izmailov and Solodov [16]. Papers [15] and [16] consider the case of p = 2 only, while we
are considering the case of p ≥ 2. Even for the case of p = 2, our results are derived under
assumptions that are weaker than those in [14, 15, 16]. For example, our Theorems 2.13 can
be viewed as a generalization of the results obtained in [14]. Namely, there is an additional
restrictive assumption in [14] that the objective function and its derivatives up to some order
are equal to zero, i.e.,

f (k)(x∗) = 0, k = 1, 2, . . . , q − 1.

As follows from consideration in [14], k has to be greater than or equal to 1. We do not make this
assumption, so our theorems cover classes of problems that are not subsumed by the theorems
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proposed in [14]. Another additional assumption in [14] is one on the constraint functions, which
is

g
(k)
i (x∗) = 0, k = 1, . . . , pi − 1.

Having such an assumption would restrict classes of nonregular problems under consideration
and would not cover the general case that is considered in our paper.

Moreover, papers [14, 15, 16] present only necessary conditions for optimality and do not
consider sufficient ones. In addition, Theorem 3.4 covers the case of any p ≥ 2 and also subsumes
the case when the set I0(h) is empty.

The optimality conditions given in papers [1, 11, 12] can be used to analyze some degenerate
optimization problems in case p = 2. However, those optimality conditions cannot be applied
in the case of p > 2, which is the main focus of this paper. In addition, necessary conditions
given in [12] allow the coefficient λ0 of the objective function to be zero. In the contrast, the
conditions given in our paper provide λ0 6= 0. Paper [18] considers the case of p > 2. However, it
requires the functions to be (2p− 1)-times continuously differentiable in the case of degeneracy
of order p. At the same time, in this paper, we only require the functions to be (p + 1)-times
continuously differentiable.

Our results will also be true in the Banach spaces, but under some additional assumptions
(see, for example, [8]).
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